
International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1223
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Focused Crawling Using Content Classification
and Link Priority Estimation

Shwetanshu Rohatgi, Sabarni Kundu

Abstract— Focused crawlers are used to crawl and index web pages that are specific to a given topic but due to this sheer amount of web
pages and data generally, a large part of data gets ignored and various anchor tags are never indexed. In order to solve such problems, we
propose an improved crawling technique by dividing current challenges into two modules and conquering them individually. We introduce a
new weighing factor based on content blocks and mutual information to obtain relevant web pages. Further, we propose the use of Context
graphs and content block partition technique in order to find relevant web links by using link priority calculator (LPC) based on cosine
similarity. This paper illustrates experimentally that our focused crawler is better than other focused crawlers based on breadth-first, anchor
text only and link-context only partition in terms of target recall. In conclusion, our proposed system is effective and efficient for focused
crawling.

Index Terms— Sematic Web, Focused Crawler, Crawling Algorithms, Naïve Bayes, Context Graphs, Link Priority, Cosine Similarity.

—————————— ——————————

1 INTRODUCTION
WW is world wide web which is a collection of millions
of web pages which act as a source of information. The
information is classified into various categories like

text, audio- visual and multimedia formats.
A Web Crawler is an automated system that has the capabi-

lies to traverse the web graph and parsing various pages as
well as forming a local repository of the URLs that have been
visited by user. Crawling involves interaction with millions of
web pages and thousands of web servers. The speed of web
crawler is not only governed by the speed of once personal
internet connection but also depends on the speed of various
websites to be crawled. It is a very internsic application for
gathering and preserving data and updating the information
with the ever expanding internet. It acts as a tool to index,
classify and update databases across servers.

A web crawler fetches a set of web pages and store them in-
to relevant database which is further used for indexing. Pages
once downloaded are then queued based on selection and re-
visit policies. Crawler has to revisit the pages to refresh the
URL database. Seed URLs are needed to begin the crawling
process. Links on seed URLs are extracted and tread recursive-
ly. Crawl frontier queue contains the hyperlink to be visited
and Crawled frontier contains hyperlinks already visited.

This paper has been organized into five sections. Section – 2
highlights the basic architecture and working of Web crawler.
Section -3 will pay emphasis on the related works based on dif-
ferent types of web crawler. Section – 4 will be about analysis of
various algorithms related to focused crawler, Section -5 will
elaborate on challenges faced by current focus crawler, Section -
6 will present our proposed web crawling algorithm further
Section -7 will infer our research findings experimentally, finally
Conclusion and References will conclude our last two sections.

2 WORKING OF WEB CRAWLERS
2.1 Introduction
The main purpose of web crawler [1] is to fetch URL and
download the corresponsding pages mention in the webpage.
Web crawlers are essential part of search engine where they

amass the corpus of webpages queued by the engine itself.
Initially web crawler starts its system by setting of URL re-

quest. All the important URLs that are to be retrevied and pri-
oritiesed are kept in URL queue and from here the crawler
gets a URL link and download the corresponding webpage.
After page downloading URLs are passed to the extractor
which would extract the required data given by the users and
then data can be organized into groups and further URL can
be pushed back to queue. This process is repeated over and
over again till the URL queue is empty [1].

2.2 Architecture

Fig. 1. Web Crawler Architecture.

W

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1224
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.3 Functioning of Web Crawler:
A list of URL seeds are passed on to URL queue via URL re-
quest. A set of crawler then gets a subset of URLs to crawl de-
pending on the return subset. They are categorized into differ-
ent domains. The crawler then fetches the web pages with the
help of a downloader, which is further passed on to the extrac-
tor. This extractor extracts relevant information according to
the users query.

3 TYPES OF WEB CRAWLERS
Depending on how the web pages are crawled and how suc-
cessive pages are retrived, we can categories web crawlers into
following types:

3.1 Focused Web Crawler
Focused crawler [2] selectes the relevant topics and obliterate
the irrelevant one from the repository on the basis of relevance
calculator algorithms.

Fig. 2. Focused Web Crawler.

The master crawler downloads the URL with the corres-
pondding web pages from the internet. It then passes the
downloaded pages to the extractor which extracts the content
and passes on to the relevance calculator. In relevance calcula-
tor, the content is judged according to the keyword matched,

common relevance, toponym relevance and toponym ontolo-
gy. On the basis of this the web pages are categorized into re-
levant and irrelevant data. Now, the relevant data are given
priority number according to their relevance given by the us-
er. Further, these webpages with assigned priority numbers
are passed on to the URL seed and the process continues till
queue is empty.

3.2 Distributed Web Crawler
A Distributed crawler [3] allows various spiders to crawl
through a number of web pages simultaneously. The whole
crawling task is divided into various spiders so as to improve
efficiency and fasten the crawling process. Distributed crawler
Obiviates the duplicate content which as repeating URLs. In
this the master crawler fetches and downloads numerous
number of webpages at the same time and it then pass the
content to extractor & parser that extract out the content. Fur-
ther, this content is passed on to the decision block that checks
for the content repetition. If it returns true, it passes the con-
tent to duplicate table and further on to irrelevant table. If the
decision block returns false it passes the content into reposito-
ry which further passes the content to another decision block
that checks for duplicate key error if the decision is false it
pass data to unique table and further to relevant repository.

Fig. 3. Distributed Web Crawler.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1225
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

3.3 Parallel Web Crawler
In parallel crawler the downloading rate is generally high as
the search engines run with multiple process in parallel to
download the web pages.[3]This process depends on the
freshness of page and accurate selection of page [4].The given
figure is the basic architecture of Parallel Crawling. Parallel
Crawler includes the processes of multiple crawling, that is
generally referred as C-proc’s. These C-procs functions like the
basic crawler only. Initially it downloads webpages from in-
ternet and store in repository and extract the relevant content.
C-procs then splits the downloading task and according to the
splitting the extracted links may be distributed among the
other crawlers.These C-procs then allocate the task either on
local network or at geographical distant location.[5]

Fig. 4. Parallel Web Crawler.

4 WEB CRAWLING ALGORITHMS
4.1 Breadth First Search
This is one of the oldest web crawling algorithms which is
being used since 1994. It uses unvisited URL queue as FIFO
queue, crawling links in the order in which they are encoun-
tered. A crawler starts at the root node and traverses all the
adjacent neighbouring nodes that are on the same level. If the
required document is reached then it is a success else it
proceeds down the next level in the web tree. In this way this
algorithm keeps searching till required node is not searched. If
objective is met then it’s a success else it’s a failure.

Breadth first search is a good technique only if the relevant
document node is found in upper portions of the tree but if
not then this algorithm will have a very high time complexity
as it will have to search through each level and then only it
can go deeper into web tree.

Andy yoo et al [6] proposed a distributed BFS for large
number of branches using Poisson random graphs and
achieved high scalability through a set of clever memory and
communication optimizations.

4.2 Depth First Search
This is a novel web graph traversing technique where algo-
rithm starts from seed URL or root node and traverse deeper
through a particular child node. This technique will prefer left

child and after traversing to the deepest node of left child it
backtracks to the next unvisited node and then continues the
processes till it finds the document node.

The algorithm is better than Breadth first search but it can
get trapped in an infinite loop if there are large number of
nodes [7], which is the case with today’s web graph.

4.3 Genetic Algorithm
Genetic algorithm is a biological evolution based algorithm.
Here a crawler starts with a set of seed urls and a fitness func-
tion is applied on these seed urls that determine the selection
of the fittest offsprings. These offsprings undergo different
genetic operations like – mutation, crossovers etc. These oper-
ations help to determine the best documents out of the com-
plete set of document and reduces the risk of being stuck in
the local minima.

There are various algorithms but genetic algorithms can
outperform them as less time is spend in searching a large
database. Genetic Algorithms can also handle multimedia re-
quests. Genetic algorithms can target a complete pool of URL
together unlike other search algorithms where there is only
one root node and traversing takes place node by node. Genet-
ic algorithms are robust and hence there have been various
contributions to genetic algorithms [8].

4.4 Naïve Bayes Classification Algorithm
Naïve Bayes Classification is a Machine Learning based classi-
fication technique which is based on Baysian Probability Theo-
rem. It is based on 3 units within web crawler. First, is a Page
Analyzer which will download the page and extract informa-
tion in ordr to decide on particular link to follow. It takes up
HTML content and forms a HTML label tree. Second, is a cha-
racterstic extraction that makes sense of content of pages with
TF-IDF (Term Frequency – Inverse Document Fre quency) [9]
which gives weightage to a word in a given link context whe-
reas IDF will reduce weightage of a word if it makes a lot of
occurences on the page. Finally a Relevance analysis based on
Bayes theorem is used to calculate relevance of the page to
that of the topic.

Naïve Bayes classifier can solve trap problem with craw-
lers where crawler gets trapped if a large number of URLs
pointing to the same page. Further reinforcement learning is
applied to web crawlers to push its limits [10].

4.5 Page Rank Algorithm
This web crawling algorithm is about ranking a page based on
its importance that is calculated from the backlinks and cita-
tions given to a web page [11]. A simple page ranking algo-
rithm is formulated as:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) PR(A)

PR(A) = Page Rank of a Website, d = damping factor, T1,….Tn
= links (1)

Using this formula pages are ranked but to come up with a
more balanced page ranking algorithm, Yongbin Qin and
Daoyun Xu [12] came up with an approach to use human fac-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1226
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

tor into page ranking equation and proposed a noval page
belief recommendation mechanishm. It takes into account sub-
jective needs of the user and in this way minimizes chance of a
topic drift. A new and revised page ranking algorithm was
proposed based on similarity measure of vector space model,
called SimRank. This algorithm partitions web database into
web social networks (WSNs) based on similarity measure.

4.6 HITS Algorithm
Kleinberg’s HITS algorithm, a method of link analysis, uses
the link structure of a network of webpages to assign relev-
ance and weights to each page. Topics are weighed using this
algorithm. Further it was found that certain tree-like web
structures can lead the HITS algorithm to malfunctioning of
algorithm which produces no insightful results. Further, two
modifications were made to the adjacency matrix input to the
HITS algorithm. Exponentiated Input, first modification, in-
cludes information not only on direct links but also on longer
paths between pages. It solved both problems related to HITS
algorithm [13]. Usage Weighted Input, in second modification,
weights links according to how often they were followed by
users in a given interval; it incorporates user feedback without
requiring direct user involvement.

5 CHALLENGES FACED BY FOCUSED CRAWLER
Now we will consider a typical focused crawler that crawls
only promising links and ignores off topic crawling by asso-
ciating a score with each link in the page that has been down-
loaded. For instance if a crawler starts from a document which
is n steps from a target document, then it will download only
limited set of pages till n-1 steps unlike a typical crawler that
will download all the webpages in the web graph till n-1 steps.

A focused crawler will consider link structure of the web
graph and content of a webpage [15]. A focused crawler will
associate a score based on relevance of the page and then best-
first search is applied that pops out the most relevant page in
the queue and in this way most relevant pages are crawled
first and this ensures that an optimal crawling path has been
traversed.

A major problem faced by this focused crawlers is that it is
frequently difficult to learn that some sets of off-topic docu-
ments or less relevant web pages often lead to highly relevant
documents. This ignorance of less relevant pages causes prob-
lems in traversing the hierarchical page layouts that common-
ly occur on the web. Another difficulty faced by existing craw-
lers is that links on the web are uni-directional, which restricts
searching to top-down traversal, a process that we call “for-
ward crawling”, so incase we start our search from a leaf node
then we will only be able to traverse down the tree until a link
to upper leaf nodes is explicitly mentioned in web page.

6 PROPOSED CRAWLING ALGORITHM
In order to optimize our focused crawler we need to optimize
two steps: Classifying the web pages and selecting the URLs
are two most important steps of the focused crawler. To come
up with more relevant pages we propose an improved system
for web page classification and context based link priority

evaluation technique.

6.1 Web Page Classification
A typical TF-IDF is used in information retrieval systems to
determine the relevance of a page with respect to topic.

We have optimized the TF-IDF technique by applying it to
HTML5 documents that are partitioned into four sections:
body, anchor text, keywords, and headline. These are assigned
weights based on their expression ability for page content.
That means, strong expression ability is propotional to high
relevance of page to that topic. A new weighing system will
improves the convergence of the information retrieval system
by optimizing information gain term.

To enable this first we need to prun our feature space as
this will make our classifier faster and efficient. Web page
classifier embeds the documents into some large feature spac-
es, and also for one with very large vocabularies. We will use
mutual information (MI) to prune the feature space. Correla-
tion of two events can be determined using MI. It can be con-
cluded that higher the MI factor high is the correlation be-
tween two events.

MI(Tj, Ci) = log [p(Tj,Ci)/p(Tj) p(Ci)] (2)

where MI(Tj, Ci) denote the MI between the feature Tj and the
class Ci; denote the probability that a document arbitrarily
selected from the corpus contains the feature Tj; p(Ci)] denote
the probability that a document arbitrarily selected from the
corpus belongs to the class Ci; p(Tj,Ci) denote the joint proba-
bility that this arbitrarily selected document belongs to the
class Ci as well as containing the feature Tj at the same time
[16].

After pruning we need to calculate the weight of each term
which is done by our optimized version of TF-IDF. We will we
giving weights to Tj in the order headline > keyword > anchor
tag text > document.

 TFij = Σ αi × TFij , 0< i < 4 (3)

New step is to calculate weight of the term in the document

Di where TFi is the term frequency and IG is the information
gain IGj that is received with respect to term Tj.

Wij = TFij × idFj × IGj / √ Σ (TFij × idFj)² (4)

Once weights have be calculated now using Naïve Bayes

machine learning algorithm we can build a classifier that will
be able to classify our web page as relevant or irrelevant. We
need to compute P(Tk|Ci) using N(Tk,Ds) is number of rele-
vant term occurences in document Ds.

6.2 Link Priority Estimator using Context Graphs
Link priority is an important metric that determines which
link will lead to a relevant and vice-versa. In order to compute
link priority we use Link Priority Calculator (LPC). Various
link priority estimators only consider anchor text to determine
priority but there are various pages that use “Click Me”,
“Click to proceed”, “Continue”, etc that may not be seem rele-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1227
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

vant at all but may link to a highly relevant page. This can be
overcome by breaking our problem into two modules.
 We use Content Block Partition (CBP) [17] to first find the
relevance of the content block as per different partions of
HTML document. If the content block is highly relevant to the
topic then we download the content and extract all links
which are added to a priority queue of unvisited link.

Further if a link falls in an irrelevant partition then we fur-
ther apply LPC strategy to compute link relevance by using
cosine similarity and team weighing scheme between link fea-
ture and topic [18].

Sim (X, Y) = X . Y / │X│ ×│Y│ (4)

Here X is Eigen vector of given topic and Y is Eigen vector

of the given content block. We compute Cosine similarity for
each of the content block to compare.

This measure does not allow us to enable significant back
crawling although we have queued a lot of topic relevant
URLs. So in order to further enhance we introduce context
graphs to calculate LPC. We back crawl a significant fraction
of the whole web using the seed URLs from the queue con-
taining on-topic document and URLs. Using context graph we
can discover hierarchies within a web graph.

We will take one URL as seed initially from our queue. This
will form layer-0. Now all relevant URL links we extracted
using cosine similarity and LPC will be treated as layer–1.
There will be no connections within a layer. Further iterating
on layer-1 and finding LPE will help us form a layer-2 and so
forth we will be able to capture different context graphs, yield-
ing a layered structure called Merged Context Graph.

After forming a Merged Context graph we need to apply
our Webpage Classifier as dicussed in section 6.1 and figure
out the relevance of each page in context graph. The classifier
of layer 0 is used as the most important determinant of wheth-
er a document is topically relevant. The discriminant and like-
lihood functions for the successive layers are used to predict
number of steps must be taken from current page before a tar-
get is found in a given content block within a page.

Fig 6. Context Graph Visualization

7 EXPERIMENTAL RESULTS
In order to verify our focused crawler for its efficiency. We
have tested it on 20 newsgroups and Open Directory Project
corpurs as our training and testing dataset. Out of 135 topics
available in corpus we have chosen 9 topics to condense a
graphical inference of improved results using our proposed
crawler. To test the performance of our crawler, we choose
nine topics as samples and 400 samples are chosen from indi-
vidual topics.

Total recall and Precision play a pivot role in determ-
ing performance of our webpage classifier but they have cer-
tain accuracy issues as described in [17]. So, we use F-measure
proposed by Lewis [19] which can accurately measure per-
formance of our classifier.

Fig 6. Comparison of F-Measure by Classifiers on dataset

As it can be seen from Fig 6 we have obtained a better
F-measure for our proposed web classification technique
based on content based weighing of terms. Hence it can be
inferred that our classifier is effective in solving classification
problems.

Now we look forward to analyzing performance of
our Link priority calculator based on context graphs and co-
sine similarity measures. In this experiment, we selected vari-
ous revevant pages for 10 different topics like cricket, salsa,
robots, machine learning, typhoid etc and the number of those
web pages for each topic was set to 35. At the same time, we
used the random way of selecting seed URLs corresponding to
our topic and the seed URLs for each topic.

However, the relevant URL link set for any above
topic is hard to determine in the web, so the true recall is
measured inaccurately. Therefore, we adopt target recall to
evaluate the performance metrics of our focused crawler.

We use Total recall as proposed by Pant [20] stating
that the fraction of relevant pages crawled, which measures
how well it is doing at finding all the relevant web pages.
Here we create a virtual WWW and give seed URLs and depth
of web. Our virtual web consists of web traversed by breath-
first crawling strategy where total recall is applied.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 1228
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig 7. Performance Comparison of Avg. Target Recalls

As can be seen from Fig 7, with the rise of crawling rate of var-
ious crawling algorithms, the average target recall of six
crawling methods is rising. This happened because the num-
ber of crawled web pages is increasing, however target set is
untouched. At 14000 pages of crawl we can observe breath-
first, anchor-only and proposed LPC giving a total recall of
0.5, 0.75 and 0.9 with ever increasing no of relevant pages
crawled. We can infer from the Fig 7 graph that our LPC and
context graph based crawler is capable to predict more accu-
rate topical priorities of web links than other crawling algo-
rithms. Therefore, the LPC, aided by Context graph and Co-
sine similarity strategy, improves the performance of the fo-
cused crawlers.

8 CONCLUSION
In this paper, we proposed and demonstrated a novel focused
crawler that builds on top of a content based weighting me-
thodology and classifies relevant links using principle of con-
text graphs and link priority calculator. The approaches pro-
posed and the experimental results draw the following con-
clusions.

 TFIDF is a well know algorithm for relevance calculation
but it fails to consider page content relevance and expression
ability. Our proposed Webpage classifier based on feature
space pruning and content block relevance helped us to im-
prove web classifier. Results show that our classifier outper-
forms TFIDF for each dataset. In addition, in order to gain bet-
ter selection of the relevant URLs, we optimised link priority
calculation algorithm using cosine similarity and context
graphs to prevent ignorance of highly relevant pages. The al-
gorithm was classified into two stages. First, the web pages
were partitioned into content blocks by the CBP algorithm and
classified using relevance weights. Second, we calculated the
relevance between links of blocks using cosine similarity and
LPC algorithm then form context graph to enable backward
crawl and capture relevant pages.

9 REFERENCES
[1] A comparative study on web crawling for searching hidden web by IJCSIT
[2] A Study of focused web crawler for sematic web by IJCSIT
[3] Shruti Sharma, A. K. Sharma and J. P. Gupta,”A noval architecture of

Parallel web crawler”, In the Int. Journal of International Journal of
computer applications(0975-8887), volume 14, Issue 4, 2011.

[4] AHChungTsol, DanieleForsali, MarcoGori, Markus Hagenbuchner
and Franco Scarselli, “A simple focused crawler”, In the Proceeding of
12th Int. WWW Conf., pages 1,2003.

[5] Junghoo Cho, Hector Garcia-Molina , “ parallel crawler”
[6] Andy Yoo,Edmond Chow, Keith Henderson, William McLendon,

Bruce Hendrickson, ÄUmit CatalyÄurek “A Scalable Distributed Pa-
rallel Breadth-First Search Algorithm on BlueGene/L” ACM 2005

[7] Narasingh Deo “Graph theory with applications to engineering and
computer science” PHI, 2004 Pg 301

[8] S.Siva Sathya and Philomina Simon,” Review on Applicability of
Genetic Algorithm to Web Search” International Journal of Computer
Theory and Engineering, Vol. 1, No. 4, October2009

[9] LUO Xin; XIA De-lin; YAN Pu-liu. Improved feature selection me-
thod and TF-IDF formula based on word frequency differentia.
Computer Applications, 2005, 25(9): 2031-2033.

[10] Wenxian Wang, Xingshu Chen, Yongbin Zou, Haizhou Wang, Zong-
kun Dai “A Focused Crawler Based on Naive Bayes Classifier” Third
International Symposium on Intelligent Information Technology and
Security Informatics, 2010

[11] Sergey Brin and Lawrence Page “Anatomy of a Large scale Hyper-
textual Web Search Engine” Proc. WWW conference 2004

[12] Yongbin Qin and Daoyun Xu “A Balanced Rank Algorithm Based on Pa-
geRank and Page Belief recommendation”

[13] Joel C. Miller, Gregory Rae, Fred Schaefer “Modifications of Kleinberg’s
HITS Algorithm Using Matrix Exponentiation and Web Log Records” Proc.
SIGIR’01, ACM 2001.

[14] Apoorv Vikram Singh , Vikas , Achyut Mishra, “A Review of Web Crawler
Algorithms”, International Journal of Computer Science and Information
Technologies, Vol. 5 (5) , 2014

[15] S. Chakrabarti, M. van der Berg, and B. Dom, “Focused crawling: a new
approach to topic-specific web resource discovery,” in Proc. of the 8th In-
ternational World-Wide Web Conference (WWW8), 1999.

[16] Houqing Lu, Donghui Zhan, Lei Zhou, and Dengchao He, “An Improved
Focused Crawler: Using Web Page Classification and Link Priority Evalua-
tion,” Mathematical Problems in Engineering, vol. 2016, Article ID 6406901,
10 pages, 2016. doi:10.1155/2016/6406901

[17] T. Peng and L. Liu, “Focused crawling enhanced by CBP-
SLC,” Knowledge-Based Systems, vol. 51, pp. 15–26, 2013.

[18] G. Salton and C. Buckley, “Term weighting approaches in automatic text
retrieval,” Information Processing and Management, vol. 24, no. 5, pp. 513–
523, 1988.

[19] D. D. Lewis, “Evaluating and optimizing autonomous text classification
systems,” in Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’95), pp. 246–254, ACM, Seattle, Wash, USA, July 1995.

[20] G. Pant and P. Srinivasan, “Link contexts in classifier-guided topical craw-
lers,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no.
1, pp. 107–122, 2006.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Working of web crawlers
	2.1 Introduction
	2.2 Architecture
	2.3 Functioning of Web Crawler:

	3 Types of web crawlers
	3.1 Focused Web Crawler
	3.3 Parallel Web Crawler

	4 Web Crawling Algorithms
	4.1 Breadth First Search
	4.2 Depth First Search
	4.3 Genetic Algorithm
	4.4 Naïve Bayes Classification Algorithm
	4.5 Page Rank Algorithm
	4.6 HITS Algorithm

	5 Challenges faced by focused crawler
	6 Proposed crawling algorithm
	6.1 Web Page Classification
	6.2 Link Priority Estimator using Context Graphs

	7 Experimental Results
	8 Conclusion
	9 References

