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Abstract— Focused crawlers are used to crawl and index web pages that are specific to a given topic but due to this sheer amount of web 
pages and data generally, a large part of data gets ignored and various anchor tags are never indexed. In order to solve such problems, we 
propose an improved crawling technique by dividing current challenges into two modules and conquering them individually. We introduce a 
new weighing factor based on content blocks and mutual information to obtain relevant web pages. Further, we propose the use of Context 
graphs and content block partition technique in order to find relevant web links by using link priority calculator (LPC) based on cosine 
similarity. This paper illustrates experimentally that our focused crawler is better than other focused crawlers based on breadth-first, anchor 
text only and link-context only partition in terms of target recall. In conclusion, our proposed system is effective and efficient for focused 
crawling. 

Index Terms— Sematic Web, Focused Crawler, Crawling Algorithms, Naïve Bayes, Context Graphs, Link Priority, Cosine Similarity.   
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1 INTRODUCTION                                                                     
WW is world wide web which is a collection of millions 
of web pages which act as a source of information. The 
information is classified into various categories like 

text, audio- visual and multimedia formats.  
A Web Crawler is an automated system that has the capabi-

lies to traverse the web graph and parsing various pages as 
well as forming a local repository of the URLs that have been 
visited by user. Crawling involves interaction with millions of 
web pages and thousands of web servers. The speed of web 
crawler is not only governed by the speed of once personal 
internet connection but also depends on the speed of various 
websites to be crawled. It is a very internsic application for 
gathering and preserving data and updating the information 
with the ever expanding internet. It acts as a tool to index, 
classify and update databases across servers.  

A web crawler fetches a set of web pages and store them in-
to relevant database which is further used for indexing. Pages 
once downloaded are then queued based on selection and re-
visit policies. Crawler has to revisit the pages to refresh the 
URL database. Seed URLs are needed to begin the crawling 
process. Links on seed URLs are extracted and tread recursive-
ly. Crawl frontier queue contains the hyperlink to be visited 
and Crawled frontier contains hyperlinks already visited.  

This paper has been organized into five sections. Section – 2 
highlights the basic architecture and working of Web crawler. 
Section -3 will pay emphasis on the related works based on dif-
ferent types of web crawler. Section – 4 will be about analysis of 
various algorithms related to focused crawler, Section -5 will 
elaborate on challenges faced by current focus crawler, Section -
6 will present our proposed web crawling algorithm further 
Section -7 will infer our research findings experimentally, finally 
Conclusion and References will conclude our last two sections.       

2   WORKING OF WEB CRAWLERS 
2.1 Introduction 
The main purpose of web crawler [1] is to fetch URL and 
download the corresponsding pages mention in the webpage. 
Web crawlers are essential part of search engine where they 

amass the corpus of webpages queued by the engine itself.  
Initially web crawler starts its system by setting of URL re-

quest. All the important URLs that are to be retrevied and pri-
oritiesed are kept in URL queue and from here the crawler 
gets a URL link and download the corresponding webpage. 
After page downloading URLs are passed to the extractor 
which would extract the required data given by the users and 
then data can be organized into groups and further URL can 
be pushed back to queue. This process is repeated over and 
over again till the URL queue is empty [1].   

2.2 Architecture 

 

Fig. 1. Web Crawler Architecture. 
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2.3 Functioning of Web Crawler:  
A list of URL seeds are passed on to URL queue via URL re-
quest. A set of crawler then gets a subset of URLs to crawl de-
pending on the return subset. They are categorized into differ-
ent domains. The crawler then fetches the web pages with the 
help of a downloader, which is further passed on to the extrac-
tor. This extractor extracts relevant information according to 
the users query.                                                    

3   TYPES OF WEB CRAWLERS  
Depending on how the web pages are crawled and how suc-
cessive pages are retrived, we can categories web crawlers into 
following types: 
 
3.1 Focused Web Crawler 
Focused crawler [2] selectes the relevant topics and obliterate 
the irrelevant one from the repository on the basis of relevance 
calculator algorithms. 

Fig. 2. Focused Web Crawler. 

The master crawler downloads the URL with the corres-
pondding web pages from the internet. It then passes the 
downloaded pages to the extractor which extracts the content 
and passes on to the relevance calculator. In relevance calcula-
tor, the content is judged according to the keyword matched, 

common relevance, toponym relevance and toponym ontolo-
gy. On the basis of this the web pages are categorized into re-
levant and irrelevant data. Now, the relevant data are given 
priority number according to their relevance given by the us-
er. Further, these webpages with assigned priority numbers 
are passed on to the URL seed and the process continues till 
queue is empty.  
 
3.2 Distributed Web Crawler 
A Distributed crawler [3] allows various spiders to crawl 
through a number of web pages simultaneously. The whole 
crawling task is divided into various spiders so as to improve 
efficiency and fasten the crawling process. Distributed crawler  
Obiviates the duplicate content which as repeating URLs. In 
this the master crawler fetches and downloads numerous 
number of webpages at the same time and it then pass the 
content to extractor & parser that extract out the content. Fur-
ther, this content is passed on to the decision block that checks 
for the content repetition. If it returns true, it passes the con-
tent to duplicate table and further on to irrelevant table. If the 
decision block returns false it passes the content into reposito-
ry which further passes the content to another decision block 
that checks for duplicate key error if the decision is false it 
pass data to unique table and further to relevant repository. 
  

 
 

Fig. 3. Distributed Web Crawler. 
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3.3 Parallel Web Crawler 
In parallel crawler the downloading rate is generally high as 
the search engines run with multiple process in parallel to 
download the web pages.[3]This process depends on the 
freshness of page and accurate selection of page [4].The given 
figure is the basic architecture of Parallel Crawling. Parallel 
Crawler includes the processes of multiple crawling, that is 
generally referred as C-proc’s. These C-procs functions like the 
basic crawler only. Initially it downloads webpages from in-
ternet and store in repository and extract the relevant content. 
C-procs then splits the downloading task and according to the 
splitting the extracted links may be distributed among the 
other crawlers.These C-procs then allocate the task either on 
local network or at geographical distant location.[5]  

 
Fig. 4. Parallel Web Crawler. 

4 WEB CRAWLING ALGORITHMS 
4.1 Breadth First Search 
This is one of the oldest web crawling algorithms which is 
being used since 1994. It uses unvisited URL queue as FIFO 
queue, crawling links in the order in which they are encoun-
tered. A crawler starts at the root node and traverses all the 
adjacent neighbouring nodes that are on the same level. If the 
required document is reached then it is a success else it 
proceeds down the next level in the web tree. In this way this 
algorithm keeps searching till required node is not searched. If 
objective is met then it’s a success else it’s a failure.  

Breadth first search is a good technique only if the relevant 
document node is found in upper portions of the tree but if 
not then this algorithm will have a very high time complexity 
as it will have to search through each level and then only it 
can go deeper into web tree.  

Andy yoo et al [6] proposed a distributed BFS for large 
number of branches using Poisson random graphs and 
achieved high scalability through a set of clever memory and 
communication optimizations.   
 
4.2 Depth First Search 
This is a novel web graph traversing technique where algo-
rithm starts from seed URL or root node and traverse deeper 
through a particular child node. This technique will prefer left 

child and after traversing to the deepest node of left child it 
backtracks to the next unvisited node and then continues the 
processes till it finds the document node.  

The algorithm is better than Breadth first search but it can 
get trapped in an infinite loop if there are large number of 
nodes [7], which is the case with today’s web graph.  

 
4.3 Genetic Algorithm 
Genetic algorithm is a biological evolution based algorithm. 
Here a crawler starts with a set of seed urls and a fitness func-
tion is applied on these seed urls that determine the selection 
of the fittest offsprings. These offsprings undergo different 
genetic operations like – mutation, crossovers etc. These oper-
ations help to determine the best documents out of the com-
plete set of document and reduces the risk of being stuck in 
the local minima.    

There are various algorithms but genetic algorithms can 
outperform them as less time is spend in searching a large 
database. Genetic Algorithms can also handle multimedia re-
quests. Genetic algorithms can target a complete pool of URL 
together unlike other search algorithms where there is only 
one root node and traversing takes place node by node. Genet-
ic algorithms are robust and hence there have been various 
contributions to genetic algorithms [8]. 
 
4.4 Naïve Bayes Classification Algorithm 
Naïve Bayes Classification is a Machine Learning based classi-
fication technique which is based on Baysian Probability Theo-
rem. It is based on 3 units within web crawler. First, is a Page 
Analyzer which will download the page and extract informa-
tion in ordr to decide on particular link to follow. It takes up 
HTML content and forms a HTML label tree. Second, is a cha-
racterstic extraction that makes sense of content of pages with 
TF-IDF (Term Frequency – Inverse Document Fre quency) [9] 
which gives weightage to a word in a given link context whe-
reas IDF will reduce weightage of a word if it makes a lot of 
occurences on the page. Finally a Relevance analysis based on 
Bayes theorem is used to calculate relevance of the page to 
that of the topic. 

Naïve Bayes classifier can solve trap problem with craw-
lers where crawler gets trapped if a large number of URLs 
pointing to the same page. Further reinforcement learning is 
applied to web crawlers to push its limits [10]. 
 
4.5 Page Rank Algorithm 
This web crawling algorithm is about ranking a page based on 
its importance that is calculated from the backlinks and cita-
tions given to a web page [11]. A simple page ranking algo-
rithm is formulated as: 
 
PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn)) PR(A)  
 
PR(A) = Page Rank of a Website, d = damping factor, T1,….Tn  
= links       (1) 
 
Using this formula pages are ranked but to come up with a 
more balanced page ranking algorithm, Yongbin Qin and 
Daoyun Xu [12] came up with an approach to use human fac-
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tor into page ranking equation and proposed a noval page 
belief recommendation mechanishm. It takes into account sub-
jective needs of the user and in this way minimizes chance of a 
topic drift. A new and revised page ranking algorithm was 
proposed based on similarity measure of vector space model, 
called SimRank. This algorithm partitions web database into 
web social networks (WSNs) based on similarity measure.  
 
4.6 HITS Algorithm 
Kleinberg’s HITS algorithm, a method of link analysis, uses 
the link structure of a network of webpages to assign relev-
ance and weights to each page. Topics are weighed using this 
algorithm. Further it was found that certain tree-like web 
structures can lead the HITS algorithm to malfunctioning of 
algorithm which produces no insightful results. Further, two 
modifications were made to the adjacency matrix input to the 
HITS algorithm. Exponentiated Input, first modification, in-
cludes information not only on direct links but also on longer 
paths between pages. It solved both problems related to HITS 
algorithm [13]. Usage Weighted Input, in second modification, 
weights links according to how often they were followed by 
users in a given interval; it incorporates user feedback without 
requiring direct user involvement.   

5 CHALLENGES FACED BY FOCUSED CRAWLER 
Now we will consider a typical focused crawler that crawls 
only promising links and ignores off topic crawling by asso-
ciating a score with each link in the page that has been down-
loaded. For instance if a crawler starts from a document which 
is n steps from a target document, then it will download only 
limited set of pages till n-1 steps unlike a typical crawler that 
will download all the webpages in the web graph till n-1 steps. 

A focused crawler will consider link structure of the web 
graph and content of a webpage [15]. A focused crawler will 
associate a score based on relevance of the page and then best-
first search is applied that pops out the most relevant page in 
the queue and in this way most relevant pages are crawled 
first and this ensures that an optimal crawling path has been 
traversed.    

A major problem faced by this focused crawlers is that it is 
frequently difficult to learn that some sets of off-topic docu-
ments or less relevant web pages often lead to highly relevant 
documents. This ignorance of less relevant pages causes prob-
lems in traversing the hierarchical page layouts that common-
ly occur on the web. Another difficulty faced by existing craw-
lers is that links on the web are uni-directional, which restricts 
searching to top-down traversal, a process that we call “for-
ward crawling”, so incase we start our search from a leaf node 
then we will only be able to traverse down the tree until a link 
to upper leaf nodes is explicitly mentioned in web page. 

6 PROPOSED CRAWLING ALGORITHM 
In order to optimize our focused crawler we need to optimize 
two steps: Classifying the web pages and selecting the URLs 
are two most important steps of the focused crawler. To come 
up with more relevant pages we propose an improved system 
for web page classification and context based link priority 

evaluation technique.  
 

6.1 Web Page Classification 
A typical TF-IDF is used in information retrieval systems to 
determine the relevance of a page with respect to topic.  

We have optimized the TF-IDF technique by applying it to 
HTML5 documents that are partitioned into four sections: 
body, anchor text, keywords, and headline. These are assigned 
weights based on their expression ability for page content. 
That means, strong expression ability is propotional to high 
relevance of page to that topic. A new weighing system will 
improves the convergence of the information retrieval system 
by optimizing information gain term.  

To enable this first we need to prun our feature space as 
this will make our classifier faster and efficient. Web page 
classifier embeds the documents into some large feature spac-
es, and also for one with very large vocabularies. We will use 
mutual information (MI) to prune the feature space. Correla-
tion of two events can be determined using MI. It can be con-
cluded that higher the MI factor high is the correlation be-
tween two events. 

 
MI(Tj, Ci) = log [p(Tj,Ci)/p(Tj) p(Ci)]  (2) 

 
where MI(Tj, Ci) denote the MI between the feature Tj and the 
class Ci;  denote the probability that a document arbitrarily 
selected from the corpus contains the feature Tj; p(Ci)] denote 
the probability that a document arbitrarily selected from the 
corpus belongs to the class Ci; p(Tj,Ci) denote the joint proba-
bility that this arbitrarily selected document belongs to the 
class Ci as well as containing the feature Tj at the same time 
[16]. 

After pruning we need to calculate the weight of each term 
which is done by our optimized version of TF-IDF. We will we 
giving weights to Tj in the order headline > keyword > anchor 
tag text > document.  

 
  TFij = Σ αi × TFij , 0< i < 4  (3)  
 
New step is to calculate weight of the term in the document 

Di where TFi is the term frequency and IG is the information 
gain IGj that is received with respect to term Tj.  

 
Wij = TFij × idFj × IGj / √ Σ (TFij × idFj )²  (4) 

 
Once weights have be calculated now using Naïve Bayes 

machine learning algorithm we can build a classifier that will 
be able to classify our web page as relevant or irrelevant. We 
need to compute P(Tk|Ci) using N(Tk,Ds) is number of rele-
vant term occurences in document Ds.  
 
6.2 Link Priority Estimator using Context Graphs 
Link priority is an important metric that determines which 
link will lead to a relevant and vice-versa. In order to compute 
link priority we use Link Priority Calculator (LPC). Various 
link priority estimators only consider anchor text to determine 
priority but there are various pages that use “Click Me”, 
“Click to proceed”, “Continue”, etc that may not be seem rele-
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vant at all but may link to a highly relevant page. This can be 
overcome by breaking our problem into two modules.  
 We use Content Block Partition (CBP) [17] to first find the 
relevance of the content block as per different partions of 
HTML document. If the content block is highly relevant to the 
topic then we download the content and extract all links 
which are added to a priority queue of unvisited link.  

Further if a link falls in an irrelevant partition then we fur-
ther apply LPC strategy to compute link relevance by using 
cosine similarity and team weighing scheme between link fea-
ture and topic [18].  

 
Sim (X, Y) = X . Y / │X│ ×│Y│  (4) 

 
Here X is Eigen vector of given topic and Y is Eigen vector 

of the given content block. We compute Cosine similarity for 
each of the content block to compare.  

This measure does not allow us to enable significant back 
crawling although we have queued a lot of topic relevant 
URLs. So in order to further enhance we introduce context 
graphs to calculate LPC. We back crawl a significant fraction 
of the whole web using the seed URLs from the queue con-
taining on-topic document and URLs. Using context graph we 
can discover hierarchies within a web graph.  

We will take one URL as seed initially from our queue. This 
will form layer-0. Now all relevant URL links we extracted 
using cosine similarity and LPC will be treated as layer–1. 
There will be no connections within a layer. Further iterating 
on layer-1 and finding LPE will help us form a layer-2 and so 
forth we will be able to capture different context graphs, yield-
ing a layered structure called Merged Context Graph.  

After forming a Merged Context graph we need to apply 
our Webpage Classifier as dicussed in section 6.1 and figure 
out the relevance of each page in context graph. The classifier 
of layer 0 is used as the most important determinant of wheth-
er a document is topically relevant. The discriminant and like-
lihood functions for the successive layers are used to predict 
number of steps must be taken from current page before a tar-
get is found in a given content block within a page. 

 

 
 

Fig 6. Context Graph Visualization 

7   EXPERIMENTAL RESULTS 
In order to verify our focused crawler for its efficiency. We 
have tested it on 20 newsgroups and Open Directory Project 
corpurs as our training and testing dataset. Out of 135 topics 
available in corpus we have chosen 9 topics to condense a 
graphical inference of improved results using our proposed 
crawler. To test the performance of our crawler, we choose 
nine topics as samples and 400 samples are chosen from indi-
vidual topics. 

Total recall and Precision play a pivot role in determ-
ing performance of our webpage classifier but they have cer-
tain accuracy issues as described in [17]. So, we use F-measure 
proposed by Lewis [19] which can accurately measure per-
formance of our classifier.   
 

 
 

Fig 6. Comparison of F-Measure by Classifiers on dataset 
 

As it can be seen from Fig 6 we have obtained a better 
F-measure for our proposed web classification technique 
based on content based weighing of terms. Hence it can be 
inferred that our classifier is effective in solving classification 
problems.  

Now we look forward to analyzing performance of 
our Link priority calculator based on context graphs and co-
sine similarity measures.  In this experiment, we selected vari-
ous revevant pages for 10 different topics like cricket, salsa, 
robots, machine learning, typhoid etc and the number of those 
web pages for each topic was set to 35. At the same time, we 
used the random way of selecting seed URLs corresponding to 
our topic and the seed URLs for each topic. 

However, the relevant URL link set for any above 
topic is hard to determine in the web, so the true recall is 
measured inaccurately. Therefore, we adopt target recall to 
evaluate the performance metrics of our focused crawler. 

We use Total recall as proposed by Pant [20] stating 
that the fraction of relevant pages crawled, which measures 
how well it is doing at finding all the relevant web pages. 
Here we create a virtual WWW and give seed URLs and depth 
of web. Our virtual web consists of web traversed by breath-
first crawling strategy where total recall is applied.  
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Fig 7. Performance Comparison of Avg. Target Recalls  
 

As can be seen from Fig 7, with the rise of crawling rate of var-
ious crawling algorithms, the average target recall of six 
crawling methods is rising. This happened because the num-
ber of crawled web pages is increasing, however target set is 
untouched. At 14000 pages of crawl we can observe breath-
first, anchor-only and proposed LPC giving a total recall of 
0.5, 0.75 and 0.9 with ever increasing no of relevant pages 
crawled. We can infer from the Fig 7 graph that our LPC and 
context graph based crawler is capable to predict more accu-
rate topical priorities of web links than other crawling algo-
rithms. Therefore, the LPC, aided by Context graph and Co-
sine similarity strategy, improves the performance of the fo-
cused crawlers. 

8     CONCLUSION 
In this paper, we proposed and demonstrated a novel focused 
crawler that builds on top of a content based weighting me-
thodology and classifies relevant links using principle of con-
text graphs and link priority calculator. The approaches pro-
posed and the experimental results draw the following con-
clusions. 

 TFIDF is a well know algorithm for relevance calculation 
but it fails to consider page content relevance and expression 
ability. Our proposed Webpage classifier based on feature 
space pruning and content block relevance helped us to im-
prove web classifier. Results show that our classifier outper-
forms TFIDF for each dataset. In addition, in order to gain bet-
ter selection of the relevant URLs, we optimised link priority 
calculation algorithm using cosine similarity and context 
graphs to prevent ignorance of highly relevant pages. The al-
gorithm was classified into two stages. First, the web pages 
were partitioned into content blocks by the CBP algorithm and 
classified using relevance weights. Second, we calculated the 
relevance between links of blocks using cosine similarity and 
LPC algorithm then form context graph to enable backward 
crawl and capture relevant pages. 
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